Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039140

ABSTRACT

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Subject(s)
Air Pollutants , Air Pollution , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/analysis , National Health Programs , Air Pollution/analysis , Particulate Matter/analysis , Europe/epidemiology , Cohort Studies , Canada/epidemiology
2.
Environ Health ; 22(1): 29, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36967400

ABSTRACT

BACKGROUND: Long-term exposure to air pollution and noise is detrimental to health; but studies that evaluated both remain limited. This study explores associations with natural and cause-specific mortality for a range of air pollutants and transportation noise. METHODS: Over 4 million adults in Switzerland were followed from 2000 to 2014. Exposure to PM2.5, PM2.5 components (Cu, Fe, S and Zn), NO2, black carbon (BC) and ozone (O3) from European models, and transportation noise from source-specific Swiss models, were assigned at baseline home addresses. Cox proportional hazards models, adjusted for individual and area-level covariates, were used to evaluate associations with each exposure and death from natural, cardiovascular (CVD) or non-malignant respiratory disease. Analyses included single and two exposure models, and subset analysis to study lower exposure ranges. RESULTS: During follow-up, 661,534 individuals died of natural causes (36.6% CVD, 6.6% respiratory). All exposures including the PM2.5 components were associated with natural mortality, with hazard ratios (95% confidence intervals) of 1.026 (1.015, 1.038) per 5 µg/m3 PM2.5, 1.050 (1.041, 1.059) per 10 µg/m3 NO2, 1.057 (1.048, 1.067) per 0.5 × 10-5/m BC and 1.045 (1.040, 1.049) per 10 dB Lden total transportation noise. NO2, BC, Cu, Fe and noise were consistently associated with CVD and respiratory mortality, whereas PM2.5 was only associated with CVD mortality. Natural mortality associations persisted < 20 µg/m3 for PM2.5 and NO2, < 1.5 10-5/m BC and < 53 dB Lden total transportation noise. The O3 association was inverse for all outcomes. Including noise attenuated all outcome associations, though many remained significant. Across outcomes, noise was robust to adjustment to air pollutants (e.g. natural mortality 1.037 (1.033, 1.042) per 10 dB Lden total transportation noise, after including BC). CONCLUSION: Long-term exposure to air pollution and transportation noise in Switzerland contribute to premature mortality. Considering co-exposures revealed the importance of local traffic-related pollutants such as NO2, BC and transportation noise.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Noise, Transportation , Humans , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Switzerland/epidemiology , Cause of Death , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Cohort Studies , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
3.
Environ Pollut ; 327: 121515, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36967008

ABSTRACT

Most studies investigating the health effects of long-term exposure to air pollution used traditional regression models, although causal inference approaches have been proposed as alternative. However, few studies have applied causal models and comparisons with traditional methods are sparse. We therefore compared the associations between natural-cause mortality and exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) using traditional Cox and causal models in a large multicenter cohort setting. We analysed data from eight well-characterized cohorts (pooled cohort) and seven administrative cohorts from eleven European countries. Annual mean PM2.5 and NO2 from Europe-wide models were assigned to baseline residential addresses and dichotomized at selected cut-off values (PM2.5: 10, 12, 15 µg/m³; NO2: 20, 40 µg/m³). For each pollutant, we estimated the propensity score as the conditional likelihood of exposure given available covariates, and derived corresponding inverse-probability weights (IPW). We applied Cox proportional hazards models i) adjusting for all covariates ("traditional Cox") and ii) weighting by IPW ("causal model"). Of 325,367 and 28,063,809 participants in the pooled and administrative cohorts, 47,131 and 3,580,264 died from natural causes, respectively. For PM2.5 above vs. below 12 µg/m³, the hazard ratios (HRs) of natural-cause mortality were 1.17 (95% CI 1.13-1.21) and 1.15 (1.11-1.19) for the traditional and causal models in the pooled cohort, and 1.03 (1.01-1.06) and 1.02 (0.97-1.09) in the administrative cohorts. For NO2 above vs below 20 µg/m³, the HRs were 1.12 (1.09-1.14) and 1.07 (1.05-1.09) for the pooled and 1.06 (95% CI 1.03-1.08) and 1.05 (1.02-1.07) for the administrative cohorts. In conclusion, we observed mostly consistent associations between long-term air pollution exposure and natural-cause mortality with both approaches, though estimates partly differed in individual cohorts with no systematic pattern. The application of multiple modelling methods might help to improve causal inference. 299 of 300 words.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Proportional Hazards Models
4.
Environ Res ; 224: 115552, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36822536

ABSTRACT

BACKGROUND: Fine particulate matter (PM2.5) is a well-recognized risk factor for premature death. However, evidence on which PM2.5 components are most relevant is unclear. METHODS: We evaluated the associations between mortality and long-term exposure to eight PM2.5 elemental components [copper (Cu), iron (Fe), zinc (Zn), sulfur (S), nickel (Ni), vanadium (V), silicon (Si), and potassium (K)]. Studied outcomes included death from diabetes, chronic kidney disease (CKD), dementia, and psychiatric disorders as well as all-natural causes, cardiovascular disease (CVD), respiratory diseases (RD), and lung cancer. We followed all residents in Denmark (aged ≥30 years) from January 1, 2000 to December 31, 2017. We used European-wide land-use regression models at a 100 × 100 m scale to estimate the residential annual mean levels of exposure to PM2.5 components. The models were developed with supervised linear regression (SLR) and random forest (RF). The associations were evaluated by Cox proportional hazard models adjusting for individual- and area-level socioeconomic factors and total PM2.5 mass. RESULTS: Of 3,081,244 individuals, we observed 803,373 death from natural causes during follow-up. We found significant positive associations between all-natural mortality with Si and K from both exposure modeling approaches (hazard ratios; 95% confidence intervals per interquartile range increase): SLR-Si (1.04; 1.03-1.05), RF-Si (1.01; 1.00-1.02), SLR-K (1.03; 1.02-1.04), and RF-K (1.06; 1.05-1.07). Strong associations of K and Si were detected with most causes of mortality except CKD and K, and diabetes and Si (the strongest associations for psychiatric disorders mortality). In addition, Fe was relevant for mortality from RD, lung cancer, CKD, and psychiatric disorders; Zn with mortality from CKD, RD, and lung cancer, and; Ni and V with lung cancer mortality. CONCLUSIONS: We present novel results of the relevance of different PM2.5 components for different causes of death, with K and Si seeming to be most consistently associated with mortality in Denmark.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Mortality , Humans , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Cause of Death , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Lung Neoplasms/mortality , Nickel , Particulate Matter/analysis , Renal Insufficiency, Chronic/mortality , Respiratory Tract Diseases/mortality , Zinc/analysis
5.
Environ Int ; 164: 107241, 2022 06.
Article in English | MEDLINE | ID: mdl-35544998

ABSTRACT

BACKGROUND: The association between long-term exposure to air pollution and mortality from cardiorespiratory diseases is well established, yet the evidence for other diseases remains limited. OBJECTIVES: To examine the associations of long-term exposure to air pollution with mortality from diabetes, dementia, psychiatric disorders, chronic kidney disease (CKD), asthma, acute lower respiratory infection (ALRI), as well as mortality from all-natural and cardiorespiratory causes in the Danish nationwide administrative cohort. METHODS: We followed all residents aged ≥ 30 years (3,083,227) in Denmark from 1 January 2000 until 31 December 2017. Annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (warm season) were estimated using European-wide hybrid land-use regression models (100 m × 100 m) and assigned to baseline residential addresses. We used Cox proportional hazard models to evaluate the association between air pollution and mortality, accounting for demographic and socioeconomic factors. We additionally applied indirect adjustment for smoking and body mass index (BMI). RESULTS: During 47,023,454 person-years of follow-up, 803,881 people died from natural causes. Long-term exposure to PM2.5 (mean: 12.4 µg/m3), NO2 (20.3 µg/m3), and/or BC (1.0 × 10-5/m) was statistically significantly associated with all studied mortality outcomes except CKD. A 5 µg/m3 increase in PM2.5 was associated with higher mortality from all-natural causes (hazard ratio 1.11; 95% confidence interval 1.09-1.13), cardiovascular disease (1.09; 1.07-1.12), respiratory disease (1.11; 1.07-1.15), lung cancer (1.19; 1.15-1.24), diabetes (1.10; 1.04-1.16), dementia (1.05; 1.00-1.10), psychiatric disorders (1.38; 1.27-1.50), asthma (1.13; 0.94-1.36), and ALRI (1.14; 1.09-1.20). Associations with long-term exposure to ozone (mean: 80.2 µg/m3) were generally negative but became significantly positive for several endpoints in two-pollutant models. Generally, associations were attenuated but remained significant after indirect adjustment for smoking and BMI. CONCLUSION: Long-term exposure to PM2.5, NO2, and/or BC in Denmark were associated with mortality beyond cardiorespiratory diseases, including diabetes, dementia, psychiatric disorders, asthma, and ALRI.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Dementia , Lung Neoplasms , Ozone , Renal Insufficiency, Chronic , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide , Particulate Matter/adverse effects , Particulate Matter/analysis , Soot
6.
Environ Health Perspect ; 130(5): 57003, 2022 05.
Article in English | MEDLINE | ID: mdl-35543508

ABSTRACT

BACKGROUND: The available evidence for positive associations between urban trees and human health is mixed, partly because the assessment of exposure to trees is often imprecise because of, for instance, exclusion of trees in private areas and the lack of three-dimensional (3D) exposure indicators (e.g., crown volume). OBJECTIVES: We aimed to quantify all trees and relevant 3D structural traits in Brussels (Belgium) and to investigate associations between the number of trees, tree traits, and sales of medication commonly prescribed for mood disorders and cardiovascular disease. METHODS: We developed a workflow to automatically isolate all individual trees from airborne light detection and ranging (LiDAR) data collected in 2012. Trait data were subsequently extracted for 309,757 trees in 604 census tracts. We used the average annual age-standardized rate of medication sales in Brussels for the period 2006 to 2014, calculated from reimbursement information on medication prescribed to adults (19-64 years of age). The medication sales data were provided by sex at the census tract level. Generalized log-linear models were used to investigate associations between the number of trees, the crown volume, tree structural variation, and medication sales. Models were run separately for mood disorder and cardiovascular medication and for men and women. All models were adjusted for indicators of area-level socioeconomic status. RESULTS: Single-factor models showed that higher stem densities and higher crown volumes are both associated with lower medication sales, but opposing associations emerged in multifactor models. Higher crown volume [an increase by one interquartile range (IQR) of 1.4×104 m³/ha] was associated with 34% lower mood disorder medication sales [women, ß=-0.341 (95% CI: -0.379, -0.303); men, ß=-0.340 (95% CI: -0.378, -0.303)] and with 21-25% lower cardiovascular medication sales [women, ß=-0.214 (95% CI: -0.246, -0.182); men, ß=-0.252 (95% CI: -0.285, -0.219)]. Conversely, a higher stem density (an increase by one IQR of 21.8 trees/ha) was associated with 28-32% higher mood disorder medication sales [women, ß=0.322 (95% CI: 0.284, 0.361); men, ß=0.281 (95% CI: 0.243, 0.319)] and with 20-24% higher cardiovascular medication sales [women, ß=0.202 (95% CI: 0.169, 0.236); men, ß=0.240 (95% CI: 0.206, 0.273)]. DISCUSSION: We found a trade-off between the number of trees and the crown volumes of those trees for human health benefits in an urban environment. Our results demonstrate that conserving large trees in urban environments may not only support conservation of biodiversity but also human health. https://doi.org/10.1289/EHP9924.


Subject(s)
Cardiovascular Diseases , Trees , Adult , Belgium/epidemiology , Cardiovascular Diseases/epidemiology , Commerce , Female , Humans , Male , Middle Aged , Mood Disorders/drug therapy , Mood Disorders/epidemiology , Young Adult
7.
Environ Health ; 21(1): 49, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35525977

ABSTRACT

BACKGROUND: Living in greener areas is associated with slower cognitive decline and reduced dementia risk among older adults, but the evidence with neurodegenerative disease mortality is scarce. We studied the association between residential surrounding greenness and neurodegenerative disease mortality in older adults. METHODS: We used data from the 2001 Belgian census linked to mortality register data during 2001-2014. We included individuals aged 60 years or older and residing in the five largest Belgian urban areas at baseline (2001). Exposure to residential surrounding greenness was assessed using the 2006 Normalized Difference Vegetation Index (NDVI) within 500-m from residence. We considered all neurodegenerative diseases and four specific outcomes: Alzheimer's disease, vascular dementia, unspecified dementia, and Parkinson's disease. We fitted Cox proportional hazard models to obtain hazard ratios (HR) and 95% confidence intervals (CI) of the associations between one interquartile range (IQR) increment in surrounding greenness and neurodegenerative disease mortality outcomes, adjusted for census-based covariates. Furthermore, we evaluated the potential role of 2010 air pollution (PM2.5 and NO2) concentrations, and we explored effect modification by sociodemographic characteristics. RESULTS: From 1,134,502 individuals included at baseline, 6.1% died from neurodegenerative diseases during follow-up. After full adjustment, one IQR (0.22) increment of surrounding greenness was associated with a 4-5% reduction in premature mortality from all neurodegenerative diseases, Alzheimer's disease, vascular and unspecified dementia [e.g., for Alzheimer's disease mortality: HR 0.95 (95%CI: 0.93, 0.98)]. No association was found with Parkinson's disease mortality. Main associations remained for all neurodegenerative disease mortality when accounting for air pollution, but not for the majority of specific mortality outcomes. Associations were strongest in the lower educated and residents from most deprived neighbourhoods. CONCLUSIONS: Living near greener spaces may reduce the risk of neurodegenerative disease mortality among older adults, potentially independent from air pollution. Socioeconomically disadvantaged groups may experience the greatest beneficial effect.


Subject(s)
Air Pollutants , Air Pollution , Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Aged , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Follow-Up Studies , Humans , Particulate Matter/analysis
8.
Environ Res ; 211: 113056, 2022 08.
Article in English | MEDLINE | ID: mdl-35248565

ABSTRACT

BACKGROUND: Residential green space has been associated with mental health benefits, but how such associations vary with green space types is insufficiently known. OBJECTIVE: We aimed to investigate associations between types and quantities of green space and sales of mood disorder medication in Belgium. METHODS: We used aggregated sales data of psycholeptics and psychoanaleptics prescribed to adults from 2006 to 2014. Generalized mixed effects models were used to investigate associations between relative covers of woodland, low-green, grassland, and garden, and average annual medication sales. Models were adjusted for socio-economic background variables, urban-rural differences, and administrative region, and included random effects of latitude and longitude. RESULTS: Urban census tracts were associated with 9-10% higher medication sales. In nationwide models, a 10% increase in relative cover of woodland, garden, and grass was associated with a 1-2% decrease in medication sales. The same association was found for low green but only for men. In stratified models, a 10% increase in relative cover of any green space type in urban census tracts was associated with a decrease of medication sales by 1-3%. In rural census tracts, no protective associations between green space and mood disorder medication sales were observed, with the exception of relative woodland cover for women (-1%), and low green was associated with higher medication sales (+6-7%). CONCLUSIONS: Taken together, these results suggest that living in green environments may be beneficial for adult mental health. Woodland exposure seemed the most beneficial, but the amount of green space was more important than the type. Results underline the importance of conserving green space in our living environment, for the conservation of biodiversity and for human health.


Subject(s)
Mental Health , Parks, Recreational , Adult , Belgium , Commerce , Female , Humans , Male , Prescriptions
9.
Sci Total Environ ; 824: 153608, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35134416

ABSTRACT

We systematically reviewed the existing evidence (until end of November 2021) on the association between long-term exposure to greenspace and behavioral problems in children according to the PRISMA 2020. The review finally reached 29 relevant studies of which, 17 were cross-sectional, 11 were cohort, and one was a case-control. Most of the studies were conducted in Europe (n = 14), followed by the USA (n = 8), and mainly (n = 21) from 2015 onwards. The overall quality of the studies in terms of risk of bias was "fair" (mean quality score = 5.4 out of 9) according to the Newcastle-Ottawa Scale. Thirteen studies (45%) had good or very good quality in terms of risk of bias. The strength and difficulty questionnaire was the most common outcome assessment instrument. Exposure to the greenspace in the reviewed studies was characterized based on different indices (availability, accessibility, and quality), mostly at residential address locations. Association of exposure to different types of greenspace were reported for nine different behavioral outcomes including total behavioral difficulties (n = 16), attention deficit hyperactivity disorder (ADHD) symptoms and severity (n = 15), ADHD diagnosis (n = 10), conduct problems (n = 10), prosocial behavior (n = 10), emotional symptoms (n = 8), peer-relationship problems (n = 8), externalizing disorders (n = 6), and internalizing disorders (n = 5). Most of the reported associations (except for conduct problems) were suggestive of beneficial association of greenspace exposure with children's behaviors; however, the studies were heterogeneous in terms of their exposure indicators, study design, and the outcome definition.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Parks, Recreational , Child , Child Behavior , Cohort Studies , Humans , Surveys and Questionnaires
10.
Sci Total Environ ; 821: 153445, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35093349

ABSTRACT

BACKGROUND: Residing close to green spaces might reduce diabetes mellitus (DM) risk; however, evidence for diabetes mortality is limited. Moreover, individual and neighbourhood social factors may determine DM risk. Exposure to green spaces may also depend on socioeconomic position (SEP). This study examined the associations between residential greenness and diabetes-related mortality, and the role of the social environment in these associations. METHODS: We used the 2001 Belgian census linked to mortality register data for the period 2001-2014. We included individuals aged 40-79 years old and residing in the five largest Belgian urban areas at baseline. Exposure to residential greenness was assessed with surrounding greenness using the Normalized Difference Vegetation Index (NDVI) within 500-m of residence (objective indicator), and perceived neighbourhood greenness (subjective indicator). We conducted mixed-effects Cox proportional hazards models to obtain hazard ratios (HR) for diabetes-related mortality per interquartile range (IQR) increments of residential greenness. We assessed effect modification by social factors through stratification. RESULTS: From 2,309,236 individuals included at baseline, 1.2% died from DM during follow-up. Both residential greenness indicators were inversely associated with diabetes-related mortality after adjustment for individual social factors. After controlling for neighbourhood SEP, the beneficial association with surrounding greenness disappeared [HR 1.02 (95%CI:0.99,1.06)], but persisted with perceived neighbourhood greenness [HR 0.93 (95%CI:0.91,0.95)]. After stratification the inverse associations with perceived neighbourhood greenness were strongest for women, the lowest educated, and individuals residing in least deprived neighbourhoods. CONCLUSIONS: Our findings suggest that an overall positive perception of neighbourhood green spaces reduces independently the risk of diabetes-related mortality, regardless of the neighbourhood social environment. Nevertheless, neighbourhood SEP may be a strong confounder in the associations between diabetes-related mortality and greenness indicators derived from satellite images. Perception factors not captured by objective measurements of green spaces are potentially relevant in the association with DM, especially among disadvantaged groups.


Subject(s)
Censuses , Diabetes Mellitus , Parks, Recreational , Residence Characteristics , Adult , Aged , Belgium/epidemiology , Cohort Studies , Diabetes Mellitus/mortality , Female , Humans , Male , Middle Aged
11.
Lancet Planet Health ; 6(1): e9-e18, 2022 01.
Article in English | MEDLINE | ID: mdl-34998464

ABSTRACT

BACKGROUND: Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS: In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS: We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 µg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 µg/m3 NO2, and 1·039 (1·018-1·059) per 0·5 × 10-5/m black carbon. Associations with PM2·5, NO2, and black carbon were slightly weaker for cardiovascular mortality, similar for non-malignant respiratory mortality, and stronger for lung cancer mortality. Warm-season O3 was negatively associated with both non-accidental and cause-specific mortality. Associations were stronger at low concentrations: HRs for non-accidental mortality at concentrations lower than the WHO 2005 air quality guideline values for PM2·5 (10 µg/m3) and NO2 (40 µg/m3) were 1·078 (1·046-1·111) per 5 µg/m3 PM2·5 and 1·049 (1·024-1·075) per 10 µg/m3 NO2. Similarly, the association between black carbon and non-accidental mortality was highest at low concentrations, with a HR of 1·061 (1·032-1·092) for exposure lower than 1·5× 10-5/m, and 1·081 (0·966-1·210) for exposure lower than 1·0× 10-5/m. INTERPRETATION: Long-term exposure to concentrations of PM2·5 and NO2 lower than current annual limit values was associated with non-accidental, cardiovascular, non-malignant respiratory, and lung cancer mortality in seven large European cohorts. Continuing research on the effects of low concentrations of air pollutants is expected to further inform the process of setting air quality standards in Europe and other global regions. FUNDING: Health Effects Institute.


Subject(s)
Air Pollution , Environmental Exposure , Mortality, Premature , Adult , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Europe/epidemiology , Humans , Longitudinal Studies , Multicenter Studies as Topic , Particulate Matter/adverse effects , Particulate Matter/analysis
12.
Sci Total Environ ; 804: 150091, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517316

ABSTRACT

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Censuses , Cohort Studies , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Humans , Particulate Matter/analysis , Particulate Matter/toxicity
13.
Sci Total Environ ; 809: 152205, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34890671

ABSTRACT

Evidence for the association between long-term exposure to ambient particulate matter components and mortality from natural causes is sparse and inconsistent. We evaluated this association in six large administrative cohorts in the framework of the Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) project. We analyzed data from country-wide administrative cohorts in Norway, Denmark, the Netherlands, Belgium, Switzerland and in Rome (Italy). Annual 2010 mean concentrations of copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn) in fine particulate matter (PM2.5) were estimated using 100 × 100 m Europe-wide hybrid land use regression models assigned to the participants' residential addresses. We applied cohort-specific Cox proportional hazard models controlling for area- and individual-level covariates to evaluate associations with natural mortality. Two pollutant models adjusting for PM2.5 total mass or nitrogen dioxide (NO2) were also applied. We pooled cohort-specific estimates using a random effects meta-analysis. We included almost 27 million participants contributing more than 240 million person-years. All components except Zn were significantly associated with natural mortality [pooled Hazard Ratios (HRs) (95% CI): 1.037 (1.014, 1.060) per 5 ng/m3 Cu; 1.069 (1.031, 1.108) per 100 ng/m3 Fe; 1.039 (1.018, 1.062) per 50 ng/m3 K; 1.024 (1.006, 1.043) per 1 ng/m3 Ni; 1.036 (1.016, 1.057) per 200 ng/m3 S; 1.152 (1.048, 1.266) per 100 ng/m3 Si; 1.020 (1.006, 1.034) per 2 ng/m3 V]. Only K and Si were robust to PM2.5 or NO2 adjustment [pooled HRs (95% CI) per 50 ng/m3 in K: 1.025 (1.008, 1.044), 1.020 (0.999, 1.042) and per 100 ng/m3 in Si: 1.121 (1.039, 1.209), 1.068 (1.022, 1.117) adjusted for PM2.5 and NO2 correspondingly]. Our findings indicate an association of natural mortality with most components, which was reduced after adjustment for PM2.5 and especially NO2.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Europe/epidemiology , Humans , Particulate Matter/analysis
14.
BMJ ; 374: n1904, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34470785

ABSTRACT

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Cardiovascular Diseases/mortality , Environmental Exposure/adverse effects , Noncommunicable Diseases/mortality , Europe , Humans
15.
Lancet Planet Health ; 5(9): e620-e632, 2021 09.
Article in English | MEDLINE | ID: mdl-34508683

ABSTRACT

BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 µg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 µg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 µg/m3 for PM2·5 and 40 µg/m3 for NO2. INTERPRETATION: Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING: Health Effects Institute.


Subject(s)
Air Pollution , Coronary Disease , Stroke , Adult , Air Pollution/adverse effects , Coronary Disease/chemically induced , Coronary Disease/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Incidence , Multicenter Studies as Topic , Stroke/epidemiology
16.
Int J Cancer ; 149(11): 1887-1897, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34278567

ABSTRACT

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/adverse effects , Liver Neoplasms/etiology , Adult , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Europe/epidemiology , Female , Humans , Incidence , Liver Neoplasms/epidemiology , Male , Middle Aged , Particle Size , Particulate Matter/toxicity , Proportional Hazards Models
17.
Eur Respir J ; 57(6)2021 06.
Article in English | MEDLINE | ID: mdl-34088754

ABSTRACT

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Adult , Air Pollutants/analysis , Air Pollution/analysis , Child , Environmental Exposure/analysis , Europe , Humans , Incidence , Particulate Matter/analysis , Sweden
18.
Health Place ; 70: 102603, 2021 07.
Article in English | MEDLINE | ID: mdl-34166885

ABSTRACT

This study examines the associations between residential urban green spaces (UGS) and self-perceived health and natural cause mortality, applying an intersectional approach across gender, education and migrant background. We used data from the 2001 Belgian census linked to register data on emigration and mortality for the period 2001-2014, including 571,558 individuals aged 16-80 residing in Brussels (80% response rate). Residential UGS were assessed with the Normalized Difference Vegetation Index (NDVI) within a 300 m buffer from the residential address and perceived neighbourhood greenness. Multilevel logistic and Cox proportional hazards regression models were conducted to estimate associations between UGS and poor self-perceived health at baseline and natural cause mortality during follow-up. Residential UGS were inversely associated with both outcomes, but there were differences between groups. The strongest beneficial associations among women were found in the lower educated, regardless of their migrant background. For men the strongest association was found in those with tertiary education and Belgian origin. No significant beneficial associations were found in men originating from low and middle-income countries. Applying an intersectionality approach is crucial to understand health inequalities related to UGS exposure. Further research in different geographical contexts is needed to contrast our findings.


Subject(s)
Censuses , Parks, Recreational , Cohort Studies , Female , Health Status , Humans , Male , Residence Characteristics , Socioeconomic Factors
19.
Environ Health Perspect ; 129(4): 47009, 2021 04.
Article in English | MEDLINE | ID: mdl-33844598

ABSTRACT

BACKGROUND: Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤2.5 µm [fine particulate matter (PM2.5)] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES: We investigated the associations between long-term exposure to PM2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS: We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100×100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and nitrogen dioxide (NO2) separately. RESULTS: We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM2.5 and NO2. HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng/m3, adjusting for PM2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION: Long-term exposure to V in PM2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cause of Death , Cohort Studies , Environmental Exposure/analysis , Humans , Middle Aged , Particulate Matter/analysis
20.
Environ Int ; 148: 106365, 2021 03.
Article in English | MEDLINE | ID: mdl-33444880

ABSTRACT

BACKGROUND: Epidemiological studies suggest that residing close to green space reduce mortality rates. We investigated the relationship between long-term exposure to residential green space and non-accidental and cardio-respiratory mortality. METHODS: We linked the Belgian 2001 census to population and mortality register follow-up data (2001-2011) among adults aged 30 years and older residing in the five largest urban areas in Belgium (n = 2,185,170 and mean follow-up time 9.4 years). Residential addresses were available at baseline. Exposure to green space was defined as 1) surrounding greenness (2006) [normalized difference vegetation index (NDVI) and modified soil-adjusted vegetation index (MSAVI2)] within buffers of 300 m, 500 m, and 1000 m; 2) surrounding green space (2006) [Urban Atlas (UA) and CORINE Land Cover (CLC)] within buffers of 300 m, 500 m, and 1000 m; and 3) perceived neighborhood green space (2001). Cox proportional hazards models with age as the underlying time scale were used to probe into cause-specific mortality (non-accidental, respiratory, COPD, cardiovascular, ischemic heart disease (IHD), and cerebrovascular). Models were adjusted for several sociodemographic variables (age, sex, marital status, country of birth, education level, employment status, and area mean income). We further adjusted our main models for annual mean (2010) values of ambient air pollution (PM2.5, PM10, NO2 and BC, one at a time), and we additionally explored potential mediation with the aforementioned pollutants. RESULTS: Higher degrees of residential green space were associated with lower rates of non-accidental and respiratory mortality. In fully adjusted models, hazard ratios (HR) per interquartile range (IQR) increase in NDVI 500 m buffer (IQR: 0.24) and UA 500 m buffer (IQR: 0.31) were 0.97 (95%CI 0.96-0.98) and 0.99 (95%CI 0.98-0.99) for non-accidental mortality, and 0.95 (95%CI 0.93-0.98) and 0.97 (95%CI 0.96-0.99) for respiratory mortality. For perceived neighborhood green space, HRs were 0.93 (95%CI 0.92-0.94) and 0.94 (95%CI 0.91-0.98) for non-accidental and respiratory mortality, respectively. The observed lower mortality risks associated with residential exposure to green space were largely independent from exposure to ambient air pollutants. CONCLUSION: We observed evidence for lower mortality risk in associations with long-term residential exposure to green space in most but not all studied causes of death in a large representative cohort for the five largest urban areas in Belgium. These findings support the importance of the availability of residential green space in urban areas.


Subject(s)
Air Pollutants , Air Pollution , Adult , Belgium/epidemiology , Censuses , Cohort Studies , Environmental Exposure/analysis , Follow-Up Studies , Humans , Parks, Recreational , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL
...